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Abstract

Bayesian classifier has gained wide popularity as a probability-based classification method
despite its assumption that attributes are conditionally mutually independent given the class
label. This paper makes a study into various algorithms to improve the classification accuracy of
Bayesian methods with respect to real estate datasets. We have applied Bayesian methods on two
variations of data sets in three different test modes. In the first instance we have taken complete
data sets, our experimental results suggest that, Bayesian network Classifier seems to be the best
performer compared to popular variants of Bayesian classifiers. In second instance we have
applied the same techniques on selected attribute i.e. after removing demographic details of
customers and and found that there is a drastic change in the results of various Bayesian
techniques except Complement Naive Bayes which is giving near about same accuracy and error
rate in both variations i.e. it is unaffected with the attribute sets.
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I INTRODUCTION

Classification is a basic task in data analysis and pattern recognition that requires the
construction of a classifier, that is, a function that assigns a class label to instances described by
a set of attributes. The induction of classifiers from data sets of preclassified instances is a
central problem in machine learning. Numerous approaches to this problem are based on various
functional representations such as decision trees, decision lists, neural networks, decision graphs,
and rules. One of the most effective classifiers, in the sense that its predictive performance is
competitive with state-of-the-art classifiers, is the so-called naive Bayesian classifier [10].

Il BAYESIAN METHODS
Bayesian Network

A Bayesian Network (BN) is a graphical model for probability relationships among a set of
variables features. The Bayesian network structure S is a directed acyclic graph (DAG) and the
nodes in S are in one-to-one correspondence with the features X. The arcs represent casual
influences among the features while the lack of possible arcs in S encodes conditional
independencies. Moreover, a feature (node) is conditionally independent from its non-
descendants given its parents (X1 is conditionally independent from X2 given X3 if P (X1|X2, X3)
=P (X1|X3) for all possible values of X1, X2, X3).

P(X2) =0.95 P(X1) = 0.95)

P (X3|X2) = 0.95 P (X4|X2, X1) = 0.95

P (X3[~X2) = 0.1 P (X4[X2, ~X1) = 0.05
P (X4-X2,X1) =0

P (X4]-X2,~X1) =0

Fig.1 The structure of Bayes network
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Typically, the task of learning a Bayesian network can be divided into two subtasks: initially, the
learning of the DAG structure of the network, and then the determination of its parameters.
Probabilistic parameters are encoded into a set of tables, one for each variable, in the form of
local conditional distributions of a variable given its parents. Given the independences encoded
into the network, the joint distribution can be reconstructed by simply multiplying these tables.
Within the general framework of inducing Bayesian networks, there are two scenarios: known
structure and unknown structure. In the first scenario, the structure of the network is given (e.g.
by an expert) and assumed to be correct. Once the network structure is fixed, learning the
parameters in the Conditional Probability Tables (CPT) is usually solved by estimating a locally
exponential number of parameters from the data provided [6]. Each node in the network has an
associated CPT that describes the conditional probability distribution of that node given the
different values of its parents. In spite of the remarkable power of Bayesian Networks, they have
an inherent limitation. This is the computational difficulty of exploring a previously unknown
network. Given a problem described by n features, the number of possible structure hypotheses is
more than exponential in n. If the structure is unknown, one approach is to introduce a scoring
function (or a score) that evaluates the “fitness” of networks with respect to the training data, and
then to search for the best network according to this score. Several researchers have shown
experimentally that the selection of a single good hypothesis using greedy search often yields
accurate predictions [7]. The most interesting feature of BNs, compared to decision trees or
neural networks, is most certainly the possibility of taking into account prior information about a
given problem, in terms of structural relationships among its features. This prior expertise, or

domain knowledge, about the structure of a Bayesian network can take the following forms:

1. Declaring that a node is a root node, i.e., it has no parents.

2. Declaring that a node is a leaf node, i.e., it has no children.

3. Declaring that a node is a direct cause or direct effect of another node.
4. Declaring that a node is not directly connected to another node.

5. Declaring that two nodes are independent, given a condition-set.
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6. Providing partial nodes ordering, that is, declare that a node appears earlier than another node

in the ordering.

7. Providing a complete node ordering.

A problem of BN classifiers is that they are not suitable for datasets with many features [18]. The
reason for this is that trying to construct a very large network is simply not feasible in terms of
time and space. A final problem is that before the induction, the numerical features need to be
discredited in most cases. [5]

Naive Bayes and NB Classifier

Naive Bayes (NB), a special form of Bayesian Network has been widely used for data
classification in that its predictive performance is competitive with state-of-the-art classifiers [1].
As a classifier, it learns from training data from the conditional probability of each attribute
given the class label. It uses Bayes rule to compute the probability of the classes given the
particular instance of the attributes, prediction of the class is done by identifying the class with
the highest posterior probability. Research shows naive Bayes still performs well in spite of

strong dependencies among attributes.

The naive Bayesian classifier represented as a Bayesian network has the simplest structure. The

assumption made is that all attributes are independent given the class and takes the form

¢ (E) = arg max p(c) ITz, p(xilc)
ceC

where x; is the value of the attribute X; and c the class value for the class variable C.

Complement Naive Bayes (CNB)

The CNB is a method that tackles the ununiformity of the data distribution. The CNB classifier is

a modification of the NB classifier. This classifier improves classification accuracy by using data
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from all categories except the category which is focused on [17]. This classifier is also used as a

baseline.

11l EXPERIMENTAL EVALUATION
Analysis

We have used 10-fold cross validation test using WEKA version 3-6-2[8, 13, 14, and 15] (Fig. 2)
to 5821 Real estate datasets. The following are the two categories under which the analysis are
carried out and the factors on which the analysis are carried out on Kappa Statistic, Mean
absolute error, Root Mean Squared Error, Root Absolute error and Root Relative Square Error

and Execution Time.[9]
e Considering complete attribute set for applying various methods.
e Methods applied on selected attributes (Demographic details removed)
Each of the method is tested on following 3 different test modes:
1. Cross validation with 10 fold
2. Splitting Data Set (75% Training and 25% Test data set)

3. Complete data set as Training data set

Input Data Set

‘ Training Data Preprocessing
l Test Data
Warious Bayesian
Approaches

Naive, Complement,

Bayes etc. testing Output

Fig. 2 Weka Model

j

Cohen’s Kappa: Measures of Data Consistency
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Cohen's kappa measures the agreement internal consistency based on a contingency table. In this

ISSN: 2249-5894

Volume 2, Issue 9

context a measure of agreement assesses the extent to which two raters give the same ratings to
the same objects. The set of possible values for one rater forms the columns and the same set of

possible values for some second rater forms the rows.
Kappa k = [observed concordance - concordance by chance]/ [1- concordance by chance]

Where "by chance™ is calculated as in chi-square: multiply row marginal times column marginal

and divide by n. One may use this measure as a decision-making tool:

Kappa « Interpretation

K <0.00 Poor

0.00 £x<0.20

Slight

0.20<x<0.40

Fair

0.40<x<0.60

Moderate

0.60 <k <0.80

Substantial

0.80 <« Almost Perfect

This interpretation is widely accepted, and many scientific journals routinely publish papers
using this interpretation for the result of test of hypothesis. [12]

Mean absolute error

Let D is dataset with values (X1, y1) , (X2, ¥2),..., (Xq, Ya)- Let y; is the actual value and y’; is the
predicted value for the independent variable Xx; . y is the mean value of y;. Mean absolute error is

T, lvi —yi'l
d

defined as Mean absolute error =

E;Lil[}-'i —yi')2

Mean Squared error = .

Square root of the mean squared error is called as root mean squared error.
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, T lyvi — yi'|
Relative absolute error = ——————

TL lyi—yl

Root Relative Squared error = —————
\ Ei:-l[]”- -y)2

The mean squared error exaggerates the presence of outliers, while the mean absolute error does
not. If we were to take the square root of the mean squared error, the resulting error measure is
called the root mean squared error. This is useful in that it allows the error measured to be of the
same magnitude as the quantity being predicted. In practice, the choice of error measure does not

greatly affect prediction model selection but it reflects the deviation from the actual values.

Time taken

Time taken to perform the algorithm is also important in terms of computation complexity of the

algorithm on the machine.

Findings

Table 1 shows the results of various Bayesian algorithms on real estate complete data set on 3
test modes. It is found that Bayesian Network is best among all other methods in terms of
identifying correct instances and low error rates. Training Test mode is best among three test
modes because it considers all the possibilities during testing.

Table 2 shows the results of various Bayesian algorithms on Real Estate selected data set
(excluding demographic details) on 3 test modes. It is found that Bayesian Network is best
among all other methods in terms of identifying correct instances and low error rates. Training

Test mode is best among three test modes.

Graph 1 show the outcome of various Bayesian algorithms on selected attributes (Demographic
details are removed). Graph 2 depicts the outcome of various Bayesian algorithms on complete

attribute set. The comparison between both variations are depicted in Graph 3, it is very clear
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that all the methods perform well in case of complete attribute set except Complement Naive

Bayes which outperforms in case of selected attribute set.

IV CONCLUSIONS

In this research work an attempt was made to evaluate the naive Bayes classifier that could be
used for real estate data sets. Our experimental results indicate that, the Bayesian network seems
to be the best performer compared to the considered various naive Bayes classifiers on selected
as well as complete data set of Real Estate. It is proved that Complement Naive Bayes performs
well on an average same in case of complete/selected dataset. The results are improved after
removing the demographic details of the customer. But In context to India, these factors are very

important in identifying the purchasing behavior of a customer.
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Graph 1. Bayesian Algorithms on Selected Attribute
Comparison of Bavesian Algorithms on Complete
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Graph 2. Bayesian Algorithms on Complete Attribute set
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Comparison of Bavesian Algorithms on Selected / Complete Attribute
set
140.00%
120.00% M Bayesian Network Selected
100.00% M Bayecsian NMetwork Complete
(%] _—
;g BO.00% MW Complete MB Selected
£ 650.00%
40.00% M Complement MB Complete
20.00% W Maive Bayes Selected
0.00% M Maive Bayves Complete
[ o s % S % % _
< b @_e}c-?} =25 o < ng? Qﬂ‘:g' ME Simple Selected
Q'a-‘_" MEB simple Complete
4.—’*&
Graph 3. Bayesian Algorithms on Selected /Complete Attribute set
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*CCI: Correctly Classified Instances, ICI: Incorrectly Classified Instances, MAE: Mean
Absolute Error, RMSE: Root Mean Squared Error, RAE: Relative Absolute Error (%),
RRSE: Root Relative Squared Error (%), Time: Execution Time (in seconds)
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